Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Med ; 4(5): 311-325.e7, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37001522

RESUMO

BACKGROUND: The GNAO1 gene, encoding the major neuronal G protein Gαo, is mutated in a subset of pediatric encephalopathies. Most such mutations consist of missense variants. METHODS: In this study, we present a precision medicine workflow combining next-generation sequencing (NGS) diagnostics, molecular etiology analysis, and personalized drug discovery. FINDINGS: We describe a patient carrying a de novo intronic mutation (NM_020988.3:c.724-8G>A), leading to epilepsy-negative encephalopathy with motor dysfunction from the second decade. Our data show that this mutation creates a novel splice acceptor site that in turn causes an in-frame insertion of two amino acid residues, Pro-Gln, within the regulatory switch III region of Gαo. This insertion misconfigures the switch III loop and creates novel interactions with the catalytic switch II region, resulting in increased GTP uptake, defective GTP hydrolysis, and aberrant interactions with effector proteins. In contrast, intracellular localization, Gßγ interactions, and G protein-coupled receptor (GPCR) coupling of the Gαo[insPQ] mutant protein remain unchanged. CONCLUSIONS: This in-depth analysis characterizes the heterozygous c.724-8G>A mutation as partially dominant negative, providing clues to the molecular etiology of this specific pathology. Further, this analysis allows us to establish and validate a high-throughput screening platform aiming at identifying molecules that could correct the aberrant biochemical functions of the mutant Gαo. FUNDING: This work was supported by the Joint Seed Money Funding scheme between the University of Geneva and the Hebrew University of Jerusalem.


Assuntos
Proteínas de Ligação ao GTP , Ensaios de Triagem em Larga Escala , Humanos , Criança , Avaliação Pré-Clínica de Medicamentos , Mutação/genética , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Guanosina Trifosfato , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(16): e2117716119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412894

RESUMO

As a critical sphingolipid metabolite, sphingosine-1-phosphate (S1P) plays an essential role in immune and vascular systems. There are five S1P receptors, designated as S1PR1 to S1PR5, encoded in the human genome, and their activities are governed by endogenous S1P, lipid-like S1P mimics, or nonlipid-like therapeutic molecules. Among S1PRs, S1PR1 stands out due to its nonredundant functions, such as the egress of T and B cells from the thymus and secondary lymphoid tissues, making it a potential therapeutic target. However, the structural basis of S1PR1 activation and regulation by various agonists remains unclear. Here, we report four atomic resolution cryo-electron microscopy (cryo-EM) structures of Gi-coupled human S1PR1 complexes: bound to endogenous agonist d18:1 S1P, benchmark lipid-like S1P mimic phosphorylated Fingolimod [(S)-FTY720-P], or nonlipid-like therapeutic molecule CBP-307 in two binding modes. Our results revealed the similarities and differences of activation of S1PR1 through distinct ligands binding to the amphiphilic orthosteric pocket. We also proposed a two-step "shallow to deep" transition process of CBP-307 for S1PR1 activation. Both binding modes of CBP-307 could activate S1PR1, but from shallow to deep transition may trigger the rotation of the N-terminal helix of Gαi and further stabilize the complex by increasing the Gαi interaction with the cell membrane. We combine with extensive biochemical analysis and molecular dynamic simulations to suggest key steps of S1P binding and receptor activation. The above results decipher the common feature of the S1PR1 agonist recognition and activation mechanism and will firmly promote the development of therapeutics targeting S1PRs.


Assuntos
Moduladores do Receptor de Esfingosina 1 Fosfato , Receptores de Esfingosina-1-Fosfato , Colite Ulcerativa/tratamento farmacológico , Microscopia Crioeletrônica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Humanos , Imunossupressores/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Organofosfatos/química , Organofosfatos/farmacologia , Organofosfatos/uso terapêutico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Esfingosina/análogos & derivados , Esfingosina/química , Esfingosina/farmacologia , Esfingosina/uso terapêutico , Moduladores do Receptor de Esfingosina 1 Fosfato/química , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia , Moduladores do Receptor de Esfingosina 1 Fosfato/uso terapêutico , Receptores de Esfingosina-1-Fosfato/agonistas , Receptores de Esfingosina-1-Fosfato/química
3.
Nature ; 600(7887): 170-175, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34789874

RESUMO

The MRGPRX family of receptors (MRGPRX1-4) is a family of mas-related G-protein-coupled receptors that have evolved relatively recently1. Of these, MRGPRX2 and MRGPRX4 are key physiological and pathological mediators of itch and related mast cell-mediated hypersensitivity reactions2-5. MRGPRX2 couples to both Gi and Gq in mast cells6. Here we describe agonist-stabilized structures of MRGPRX2 coupled to Gi1 and Gq in ternary complexes with the endogenous peptide cortistatin-14 and with a synthetic agonist probe, respectively, and the development of potent antagonist probes for MRGPRX2. We also describe a specific MRGPRX4 agonist and the structure of this agonist in a complex with MRGPRX4 and Gq. Together, these findings should accelerate the structure-guided discovery of therapeutic agents for pain, itch and mast cell-mediated hypersensitivity.


Assuntos
Microscopia Crioeletrônica , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/química , Prurido/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Receptores de Neuropeptídeos/antagonistas & inibidores , Receptores de Neuropeptídeos/química , Agonismo Inverso de Drogas , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/ultraestrutura , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/ultraestrutura , Humanos , Modelos Moleculares , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/ultraestrutura , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestrutura , Receptores de Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/ultraestrutura
4.
J Phys Chem Lett ; 12(38): 9293-9300, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34542294

RESUMO

Bitter taste receptors (TAS2Rs) function in taste perception, but are also expressed in many extraoral tissues, presenting attractive therapeutic targets. TAS2R5s expressed on human airway smooth muscle cells can induce bronchodilation for treating asthma and other obstructive diseases. But TAS2R5s display low agonist affinity and the lack of a 3D structure has hindered efforts to design more active ligands. We report the structure of the activated TAS2R5 coupled to the Gi protein and bound to each of 19 agonists, using computational approaches. These agonists bind to two polar residues in TM3 that are unique for TAS2R5 among 25 TAS2R subtypes. Our predicted results correlate well with experimental results of agonist-receptor signaling coefficients, providing validation of the predicted structure. These results provide highly specific data on how agonists activate TAS2R5, how modifications of ligand structure alter receptor activation, and a guide to structure-based drug design.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Receptores Acoplados a Proteínas G/agonistas , Sítios de Ligação , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Simulação de Dinâmica Molecular , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Termodinâmica
5.
Nature ; 595(7867): 450-454, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34194039

RESUMO

Family C G-protein-coupled receptors (GPCRs) operate as obligate dimers with extracellular domains that recognize small ligands, leading to G-protein activation on the transmembrane (TM) domains of these receptors by an unknown mechanism1. Here we show structures of homodimers of the family C metabotropic glutamate receptor 2 (mGlu2) in distinct functional states and in complex with heterotrimeric Gi. Upon activation of the extracellular domain, the two transmembrane domains undergo extensive rearrangement in relative orientation to establish an asymmetric TM6-TM6 interface that promotes conformational changes in the cytoplasmic domain of one protomer. Nucleotide-bound Gi can be observed pre-coupled to inactive mGlu2, but its transition to the nucleotide-free form seems to depend on establishing the active-state TM6-TM6 interface. In contrast to family A and B GPCRs, G-protein coupling does not involve the cytoplasmic opening of TM6 but is facilitated through the coordination of intracellular loops 2 and 3, as well as a critical contribution from the C terminus of the receptor. The findings highlight the synergy of global and local conformational transitions to facilitate a new mode of G-protein activation.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/química , Humanos , Modelos Moleculares , Multimerização Proteica , Receptores de Glutamato Metabotrópico/química
7.
Nat Struct Mol Biol ; 28(3): 258-267, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33633398

RESUMO

G-protein-coupled receptors (GPCRs) are the largest superfamily of transmembrane proteins and the targets of over 30% of currently marketed pharmaceuticals. Although several structures have been solved for GPCR-G protein complexes, few are in a lipid membrane environment. Here, we report cryo-EM structures of complexes of neurotensin, neurotensin receptor 1 and Gαi1ß1γ1 in two conformational states, resolved to resolutions of 4.1 and 4.2 Å. The structures, determined in a lipid bilayer without any stabilizing antibodies or nanobodies, reveal an extended network of protein-protein interactions at the GPCR-G protein interface as compared to structures obtained in detergent micelles. The findings show that the lipid membrane modulates the structure and dynamics of complex formation and provide a molecular explanation for the stronger interaction between GPCRs and G proteins in lipid bilayers. We propose an allosteric mechanism for GDP release, providing new insights into the activation of G proteins for downstream signaling.


Assuntos
Microscopia Crioeletrônica , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/ultraestrutura , Bicamadas Lipídicas , Nanoestruturas/química , Receptores de Neurotensina/metabolismo , Receptores de Neurotensina/ultraestrutura , Regulação Alostérica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/ultraestrutura , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/ultraestrutura , Subunidades gama da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/ultraestrutura , Guanosina Difosfato/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/química , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Micelas , Modelos Moleculares , Neurotensina/química , Neurotensina/metabolismo , Conformação Proteica , Receptores de Neurotensina/química , Transdução de Sinais
8.
Mol Cell ; 81(6): 1147-1159.e4, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33548201

RESUMO

The dopamine system, including five dopamine receptors (D1R-D5R), plays essential roles in the central nervous system (CNS), and ligands that activate dopamine receptors have been used to treat many neuropsychiatric disorders. Here, we report two cryo-EM structures of human D3R in complex with an inhibitory G protein and bound to the D3R-selective agonists PD128907 and pramipexole, the latter of which is used to treat patients with Parkinson's disease. The structures reveal agonist binding modes distinct from the antagonist-bound D3R structure and conformational signatures for ligand-induced receptor activation. Mutagenesis and homology modeling illuminate determinants of ligand specificity across dopamine receptors and the mechanisms for Gi protein coupling. Collectively our work reveals the basis of agonist binding and ligand-induced receptor activation and provides structural templates for designing specific ligands to treat CNS diseases targeting the dopaminergic system.


Assuntos
Microscopia Crioeletrônica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Modelos Moleculares , Complexos Multiproteicos/ultraestrutura , Receptores de Dopamina D3/química , Benzopiranos/química , Células HEK293 , Humanos , Complexos Multiproteicos/química , Oxazinas/química , Pramipexol/química , Domínios Proteicos , Relação Estrutura-Atividade
9.
PLoS One ; 16(1): e0245197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33493164

RESUMO

Conversion of adenosine triphosphate (ATP) to the second messenger cyclic adenosine monophosphate (cAMP) is an essential reaction mechanism that takes place in eukaryotes, triggering a variety of signal transduction pathways. ATP conversion is catalyzed by the enzyme adenylyl cyclase (AC), which can be regulated by binding inhibitory, Gαi, and stimulatory, Gαs subunits. In the past twenty years, several crystal structures of AC in isolated form and complexed to Gαs subunits have been resolved. Nevertheless, the molecular basis of the inhibition mechanism of AC, induced by Gαi, is still far from being fully understood. Here, classical molecular dynamics simulations of the isolated holo AC protein type 5 and the holo binary complex AC5:Gαi have been analyzed to investigate the conformational impact of Gαi association on ATP-bound AC5. The results show that Gαi appears to inhibit the activity of AC5 by preventing the formation of a reactive ATP conformation.


Assuntos
Adenilil Ciclases/química , AMP Cíclico/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Humanos , Estrutura Quaternária de Proteína
10.
Nature ; 589(7843): 620-626, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33408414

RESUMO

Adhesion G-protein-coupled receptors (GPCRs) are a major family of GPCRs, but limited knowledge of their ligand regulation or structure is available1-3. Here we report that glucocorticoid stress hormones activate adhesion G-protein-coupled receptor G3 (ADGRG3; also known as GPR97)4-6, a prototypical adhesion GPCR. The cryo-electron microscopy structures of GPR97-Go complexes bound to the anti-inflammatory drug beclomethasone or the steroid hormone cortisol revealed that glucocorticoids bind to a pocket within the transmembrane domain. The steroidal core of glucocorticoids is packed against the 'toggle switch' residue W6.53, which senses the binding of a ligand and induces activation of the receptor. Active GPR97 uses a quaternary core and HLY motif to fasten the seven-transmembrane bundle and to mediate G protein coupling. The cytoplasmic side of GPR97 has an open cavity, where all three intracellular loops interact with the Go protein, contributing to the high basal activity of GRP97. Palmitoylation at the cytosolic tail of the Go protein was found to be essential for efficient engagement with GPR97 but is not observed in other solved GPCR complex structures. Our work provides a structural basis for ligand binding to the seven-transmembrane domain of an adhesion GPCR and subsequent G protein coupling.


Assuntos
Microscopia Crioeletrônica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Glucocorticoides/química , Glucocorticoides/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/ultraestrutura , Sítios de Ligação , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/ultraestrutura , Humanos , Ligantes , Lipoilação , Modelos Moleculares , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo
11.
Proc Natl Acad Sci U S A ; 117(42): 26218-26225, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020275

RESUMO

Understanding the activation mechanism of the µ-opioid receptor (µ-OR) and its selective coupling to the inhibitory G protein (Gi) is vital for pharmaceutical research aimed at finding treatments for the opioid overdose crisis. Many attempts have been made to understand the mechanism of the µ-OR activation, following the elucidation of new crystal structures such as the antagonist- and agonist-bound µ-OR. However, the focus has not been placed on the underlying energetics and specificity of the activation process. An energy-based picture would not only help to explain this coupling but also help to explore why other possible options are not common. For example, one would like to understand why µ-OR is more selective to Gi than a stimulatory G protein (Gs). Our study used homology modeling and a coarse-grained model to generate all of the possible "end states" of the thermodynamic cycle of the activation of µ-OR. The end points were further used to generate reasonable intermediate structures of the receptor and the Gi to calculate two-dimensional free energy landscapes. The results of the landscape calculations helped to propose a plausible sequence of conformational changes in the µ-OR and Gi system and for exploring the path that leads to its activation. Furthermore, in silico alanine scanning calculations of the last 21 residues of the C terminals of Gi and Gs were performed to shed light on the selective binding of Gi to µ-OR. Overall, the present work appears to demonstrate the potential of multiscale modeling in exploring the action of G protein-coupled receptors.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , Transdução de Sinais , Termodinâmica
12.
Biomolecules ; 10(9)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957635

RESUMO

Adenylyl cyclases (ACs) have a crucial role in many signal transduction pathways, in particular in the intricate control of cyclic AMP (cAMP) generation from adenosine triphosphate (ATP). Using homology models developed from existing structural data and docking experiments, we have carried out all-atom, microsecond-scale molecular dynamics simulations on the AC5 isoform of adenylyl cyclase bound to the inhibitory G-protein subunit Gαi in the presence and in the absence of ATP. The results show that Gαi has significant effects on the structure and flexibility of adenylyl cyclase, as observed earlier for the binding of ATP and Gsα. New data on Gαi bound to the C1 domain of AC5 help explain how Gαi inhibits enzyme activity and obtain insight on its regulation. Simulations also suggest a crucial role of ATP in the regulation of the stimulation and inhibition of AC5.


Assuntos
Adenilil Ciclases/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Simulação de Dinâmica Molecular , Domínios Proteicos , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Adenilil Ciclases/metabolismo , Regulação Alostérica , Animais , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Cinética , Camundongos , Ligação Proteica
13.
Nature ; 585(7823): 135-140, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32610344

RESUMO

Chemokines and their receptors mediate cell migration, which influences multiple fundamental biological processes and disease conditions such as inflammation and cancer1. Although ample effort has been invested into the structural investigation of the chemokine receptors and receptor-chemokine recognition2-4, less is known about endogenous chemokine-induced receptor activation and G-protein coupling. Here we present the cryo-electron microscopy structures of interleukin-8 (IL-8, also known as CXCL8)-activated human CXC chemokine receptor 2 (CXCR2) in complex with Gi protein, along with a crystal structure of CXCR2 bound to a designed allosteric antagonist. Our results reveal a unique shallow mode of binding between CXCL8 and CXCR2, and also show the interactions between CXCR2 and Gi protein. Further structural analysis of the inactive and active states of CXCR2 reveals a distinct activation process and the competitive small-molecule antagonism of chemokine receptors. In addition, our results provide insights into how a G-protein-coupled receptor is activated by an endogenous protein molecule, which will assist in the rational development of therapeutics that target the chemokine system for better pharmacological profiles.


Assuntos
Modelos Moleculares , Receptores de Interleucina-8B/química , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais , Regulação Alostérica , Sítio Alostérico , Quimiocinas/classificação , Quimiocinas/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Interleucina-8/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
14.
Nature ; 584(7819): 125-129, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32528175

RESUMO

The D2 dopamine receptor (DRD2) is a therapeutic target for Parkinson's disease1 and antipsychotic drugs2. DRD2 is activated by the endogenous neurotransmitter dopamine and synthetic agonist drugs such as bromocriptine3, leading to stimulation of Gi and inhibition of adenylyl cyclase. Here we used cryo-electron microscopy to elucidate the structure of an agonist-bound activated DRD2-Gi complex reconstituted into a phospholipid membrane. The extracellular ligand-binding site of DRD2 is remodelled in response to agonist binding, with conformational changes in extracellular loop 2, transmembrane domain 5 (TM5), TM6 and TM7, propagating to opening of the intracellular Gi-binding site. The DRD2-Gi structure represents, to our knowledge, the first experimental model of a G-protein-coupled receptor-G-protein complex embedded in a phospholipid bilayer, which serves as a benchmark to validate the interactions seen in previous detergent-bound structures. The structure also reveals interactions that are unique to the membrane-embedded complex, including helix 8 burial in the inner leaflet, ordered lysine and arginine side chains in the membrane interfacial regions, and lipid anchoring of the G protein in the membrane. Our model of the activated DRD2 will help to inform the design of subtype-selective DRD2 ligands for multiple human central nervous system disorders.


Assuntos
Microscopia Crioeletrônica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/ultraestrutura , Lipídeos de Membrana/metabolismo , Membranas Artificiais , Receptores de Dopamina D2/química , Receptores de Dopamina D2/ultraestrutura , Bromocriptina/química , Bromocriptina/metabolismo , Dopamina/química , Dopamina/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Lipídeos de Membrana/química , Modelos Moleculares , Conformação Proteica , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo , Transdução de Sinais
15.
Cell Res ; 30(7): 564-573, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32494023

RESUMO

Metabotropic GABAB G protein-coupled receptor functions as a mandatory heterodimer of GB1 and GB2 subunits and mediates inhibitory neurotransmission in the central nervous system. Each subunit is composed of the extracellular Venus flytrap (VFT) domain and transmembrane (TM) domain. Here we present cryo-EM structures of full-length human heterodimeric GABAB receptor in the antagonist-bound inactive state and in the active state complexed with an agonist and a positive allosteric modulator in the presence of Gi1 protein at a resolution range of 2.8-3.0 Å. Our structures reveal that agonist binding stabilizes the closure of GB1 VFT, which in turn triggers a rearrangement of TM interfaces between the two subunits from TM3-TM5/TM3-TM5 in the inactive state to TM6/TM6 in the active state and finally induces the opening of intracellular loop 3 and synergistic shifting of TM3, 4 and 5 helices in GB2 TM domain to accommodate the α5-helix of Gi1. We also observed that the positive allosteric modulator anchors at the dimeric interface of TM domains. These results provide a structural framework for understanding class C GPCR activation and a rational template for allosteric modulator design targeting the dimeric interface of GABAB receptor.


Assuntos
Microscopia Crioeletrônica , Receptores de GABA-B/ultraestrutura , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica , Receptores de GABA-B/química , Homologia Estrutural de Proteína
16.
J Genet ; 992020.
Artigo em Inglês | MEDLINE | ID: mdl-32366735

RESUMO

Goat is the most preferred domesticated animal in Indian subcontinent. However, the climatic change-induced heat stresscauses a formidable challenge for maintaining optimum productivity. G protein subunit alpha i3 (GNAI3) is one of the genes that may have significant role in heat tolerance mechanism in goats. The caprine GNAI3 gene was searched for homology analysis and its three dimensional protein structure was predicted followed by its validation through in silico approach. Nucleotide sequence-based phylogenetic tree analysis showed that the caprine GNAI3 gene has close evolutionary relationship with that of Ovis aries. Homology modelling of caprine GNAI3 protein was done in MODELLER 9.18 (P1), PHYRE2 (P2), GENO3D (P3) and SWISS MODEL (P4). The modelled structures were further validated after observing the Ramachandran and hydrophobicity plots. In the best of three dimensional protein structure (P4 as produced by SWISS MODEL), 330 (98.8%), three (0.9%) and one (0.3%) amino acid residues were found in favoured region, allowed region and outlier region, respectively. Degree of hydrophobicity of the generated protein structures revealed the presence of alternate hydrophobic and hydrophilic regions. The ligand receptor interaction site of the predicted 3D model was traced out using Discovery Studio 3.5. STRING database revealed protein interactions with Plcb1, Plcb2, Plcb3 and other proteins of G family such as Gnb1, Gnb2, Gnb3,Gnb4, Gng2, Gng4 and Gpsm1. KEGG pathway maps revealed interaction with eNOS, iNOS, VEGF and MAPK, which are reported to be transcribed in response to heat stress. Thus, caprine GNAI3 can be used as a possible biomarker for studying heattolerance mechanism in goats.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Cabras/genética , Termotolerância/genética , Sequência de Aminoácidos , Animais , Biologia Computacional , Simulação por Computador , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Cabras/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Modelos Moleculares , Filogenia , Conformação Proteica , Mapeamento de Interação de Proteínas , Homologia de Sequência de Aminoácidos
17.
Science ; 367(6484): 1346-1352, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32193322

RESUMO

Class B G protein-coupled receptors, an important class of therapeutic targets, signal mainly through the Gs class of heterotrimeric G proteins, although they do display some promiscuity in G protein binding. Using cryo-electron microscopy, we determined the structures of the human glucagon receptor (GCGR) bound to glucagon and distinct classes of heterotrimeric G proteins, Gs or Gi1 These two structures adopt a similar open binding cavity to accommodate Gs and Gi1 The Gs binding selectivity of GCGR is explained by a larger interaction interface, but there are specific interactions that affect Gi more than Gs binding. Conformational differences in the receptor intracellular loops were found to be key selectivity determinants. These distinctions in transducer engagement were supported by mutagenesis and functional studies.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Glucagon/química , Receptores de Glucagon/química , Sítios de Ligação , Microscopia Crioeletrônica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/ultraestrutura , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Glucagon/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Conformação Proteica em alfa-Hélice , Receptores de Glucagon/metabolismo , Receptores de Glucagon/ultraestrutura , Transdução de Sinais
18.
Proc Natl Acad Sci U S A ; 117(11): 5836-5843, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32127473

RESUMO

The kappa opioid receptor (κOR) is an important target for pain therapeutics to reduce depression and other harmful side effects of existing medications. The analgesic activity is mediated by κOR signaling through the adenylyl cyclase-inhibitory family of Gi protein. Here, we report the three-dimensional (3D) structure for the active state of human κOR complexed with both heterotrimeric Gi protein and MP1104 agonist. This structure resulted from long molecular dynamics (MD) and metadynamics (metaMD) simulations starting from the 3.1-Å X-ray structure of κOR-MP1104 after replacing the nanobody with the activated Gi protein and from the 3.5-Å cryo-EM structure of µOR-Gi complex after replacing the 168 missing residues. Using MD and metaMD we discovered interactions to the Gi protein with strong anchors to two intracellular loops and transmembrane helix 6 of the κOR. These anchors strengthen the binding, contributing to a contraction in the binding pocket but an expansion in the cytoplasmic region of κOR to accommodate G protein. These remarkable changes in κOR structure reveal that the anchors are essential for activation.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Morfinanos/química , Receptores Opioides kappa/química , Analgésicos , Sítios de Ligação , Fenômenos Biofísicos , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica
19.
Cell ; 180(4): 645-654.e13, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32004460

RESUMO

Drugs selectively targeting CB2 hold promise for treating neurodegenerative disorders, inflammation, and pain while avoiding psychotropic side effects mediated by CB1. The mechanisms underlying CB2 activation and signaling are poorly understood but critical for drug design. Here we report the cryo-EM structure of the human CB2-Gi signaling complex bound to the agonist WIN 55,212-2. The 3D structure reveals the binding mode of WIN 55,212-2 and structural determinants for distinguishing CB2 agonists from antagonists, which are supported by a pair of rationally designed agonist and antagonist. Further structural analyses with computational docking results uncover the differences between CB2 and CB1 in receptor activation, ligand recognition, and Gi coupling. These findings are expected to facilitate rational structure-based discovery of drugs targeting the cannabinoid system.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Receptor CB2 de Canabinoide/química , Transdução de Sinais , Animais , Sítios de Ligação , Células CHO , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/síntese química , Antagonistas de Receptores de Canabinoides/farmacologia , Cricetinae , Cricetulus , Microscopia Crioeletrônica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/metabolismo , Células Sf9 , Spodoptera
20.
Cell ; 180(4): 655-665.e18, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32004463

RESUMO

Human endocannabinoid systems modulate multiple physiological processes mainly through the activation of cannabinoid receptors CB1 and CB2. Their high sequence similarity, low agonist selectivity, and lack of activation and G protein-coupling knowledge have hindered the development of therapeutic applications. Importantly, missing structural information has significantly held back the development of promising CB2-selective agonist drugs for treating inflammatory and neuropathic pain without the psychoactivity of CB1. Here, we report the cryoelectron microscopy structures of synthetic cannabinoid-bound CB2 and CB1 in complex with Gi, as well as agonist-bound CB2 crystal structure. Of important scientific and therapeutic benefit, our results reveal a diverse activation and signaling mechanism, the structural basis of CB2-selective agonists design, and the unexpected interaction of cholesterol with CB1, suggestive of its endogenous allosteric modulating role.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Receptor CB1 de Canabinoide/química , Receptor CB2 de Canabinoide/química , Transdução de Sinais , Regulação Alostérica , Sítio Alostérico , Animais , Células CHO , Agonistas de Receptores de Canabinoides/química , Canabinoides/química , Canabinoides/farmacologia , Linhagem Celular Tumoral , Colesterol/química , Colesterol/farmacologia , Cricetinae , Cricetulus , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Simulação de Dinâmica Molecular , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Células Sf9 , Spodoptera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...